sztuczna inteligencja Tag

Home > Posts tagged "sztuczna inteligencja"
  • All
  • BLOCKCHAINS
  • ROZPOZNAWANIE OBRAZÓW
  • SIECI NEURONOWE
  • UCZENIE MASZYNOWE

Patrząc na postęp technologiczny, jaki dokonał się w ostatnich kilku latach, trudno wymienić dwie bardziej przełomowe technologie niż sztuczna inteligencja i blockchain. Pierwsza z nich otworzyła całkiem nowe możliwości na polach analizy danych, przewidywania wyników i robotyce. Druga na całkiem nowy poziom wyniosła decentralizację, transparentność oraz bezpieczeństwo wynikające z wbudowanej...

Jeszcze do niedawna duża część kluczowych pojęć z zakresu szeroko rozumianej sztucznej inteligencji nie była jednoznacznie zdefiniowana. Niektóre z nich, jak Deep Learning, były nawet określane mianem “buzzwords”, czyli pojęć używanych głównie przez marketing i nie mających ścisłego przełożenia na obszary naukowe. Obecnie wydaje się, że podstawowe pojęcia ugruntowały się...

W poprzednich trzech częściach tutoriala w szczegółach poznaliśmy sieci konwolucyjne. Przyjrzeliśmy się operacji konwolucji, architekturze sieci konwolucyjnych oraz problemowi overfittingu. W klasyfikacji zbioru CIFAR-10 osiągnęliśmy wynik 81% na zbiorze testowym. Aby pójść dalej, musielibyśmy zmienić architekturę naszej sieci, poeksperymentować z hiperparametrami lub uzyskać więcej danych. Dwa pierwsze rozwiązania zostawiam dla...

Konwolucyjne sieci neuronowe to jedna z najbardziej skutecznych architektur sieci neuronowych w obszarze klasyfikacji obrazów. W pierwszej części tutoriala omówiliśmy zagadnienie konwolucji oraz zbudowaliśmy prostą, gęsto połączoną sieć neuronową, której użyliśmy do klasyfikacji zbioru CIFAR-10, uzyskując skuteczność na poziomie 47%. W części drugiej tutoriala zapoznaliśmy się szczegółowo z architekturą i...

Neuronowe sieci konwolucyjne pozwalają uzyskać bardzo dobre wyniki klasyfikacji w przypadku obrazów. W poprzednim poście mieliście okazję dowiedzieć się, czym jest konwolucja oraz jak sklasyfikować zbiór CIFAR-10 wykorzystując prostą klasyczną sieć neuronową. Przypomnę, że uzyskaliśmy poprawność klasyfikacji na zbiorze testowym na poziomie 47%. W drugiej części tutoriala idziemy dalej: wyjaśniamy...

Głębokie sieci neuronowe znajdują szerokie zastosowanie w rozpoznawaniu obrazów i kształtów. Przykładowe aplikacje obejmują rozpoznawanie twarzy, analizę obrazów w medycynie, klasyfikację pisma czy detekcję obiektów otoczenia. Specjalnym rodzajem sieci neuronowej, który wyjątkowo dobrze radzi sobie z przetwarzaniem obrazu, są konwolucyjne sieci neuronowe. Przyznam, że ConvNet to moja ulubiona architektura głębokich...

Jednym z pierwszych problemów, na jakie napotykają osoby studiujące uczenie maszynowe jest jak zbudować lokalne środowisko programistyczne dla uczenia maszynowego? Jest to o tyle niewdzięczne zagadnienie, że dostępnych jest wiele metod oraz narzędzi i czasami po prostu nie wiadomo, które wybrać i od czego zacząć. Do tego dochodzą kwestie wyboru...

Rozpoznawanie kształtów, a w szczególności rozpoznawanie pisma odręcznego, to jeden z najwdzięczniejszych tematów dla każdego rozpoczynającego naukę AI. Powodów jest kilka, ale dwa najważniejsze to łatwość, z jaką możemy skorzystać z dobrze opracowanych gotowych zbiorów danych oraz możliwość wizualizacji tychże danych. Z niniejszego tutoriala dowiesz się między innymi: Czym jest zbiór...