uczenie maszynowe Tag

Home > Posts tagged "uczenie maszynowe"
  • All
  • ROZPOZNAWANIE OBRAZÓW
  • TECHNOLOGIA BLOCKCHAIN
  • UCZENIE MASZYNOWE

Dziś taki lekki misz-masz. W uczeniu maszynowym określenie struktury modelu i trening sieci neuronowej to stosunkowo niewielkie elementy dłuższego łańcucha czynności, który rozpoczyna się od załadowania zbioru danych, jego podziału na podzbiory uczący, walidacyjny oraz testowy i odpowiedniego serwowania danych do modelu. Po drodze pojawiają się również takie kwestie jak...

Przygotowanie danych do uczenia maszynowego nie jest zadaniem, za którym tęskni większość specjalistów AI. Dane bywają różnej jakości, najczęściej wymagają bardzo dokładnej analizy, czasami ręcznego przeglądu, a na pewno selekcji i wstępnego przetworzenia. W przypadku zadań klasyfikacyjnych podział zbioru na klasy bywa niewłaściwy lub niewystarczająco zbalansowany. Często danych jest również...

Patrząc na postęp technologiczny, jaki dokonał się w ostatnich kilku latach, trudno wymienić dwie bardziej przełomowe technologie niż sztuczna inteligencja i blockchain. Pierwsza z nich otworzyła całkiem nowe możliwości na polach analizy danych, przewidywania wyników i robotyce. Druga na całkiem nowy poziom wyniosła decentralizację, transparentność oraz bezpieczeństwo wynikające z wbudowanej...

Jeszcze do niedawna duża część kluczowych pojęć z zakresu szeroko rozumianej sztucznej inteligencji nie była jednoznacznie zdefiniowana. Niektóre z nich, jak Deep Learning, były nawet określane mianem “buzzwords”, czyli pojęć używanych głównie przez marketing i nie mających ścisłego przełożenia na obszary naukowe. Obecnie wydaje się, że podstawowe pojęcia ugruntowały się...

W poprzednich trzech częściach tutoriala w szczegółach poznaliśmy sieci konwolucyjne. Przyjrzeliśmy się operacji konwolucji, architekturze sieci konwolucyjnych oraz problemowi overfittingu. W klasyfikacji zbioru CIFAR-10 osiągnęliśmy wynik 81% na zbiorze testowym. Aby pójść dalej, musielibyśmy zmienić architekturę naszej sieci, poeksperymentować z hiperparametrami lub uzyskać więcej danych. Dwa pierwsze rozwiązania zostawiam dla...

Konwolucyjne sieci neuronowe to jedna z najbardziej skutecznych architektur sieci neuronowych w obszarze klasyfikacji obrazów. W pierwszej części tutoriala omówiliśmy zagadnienie konwolucji oraz zbudowaliśmy prostą, gęsto połączoną sieć neuronową, której użyliśmy do klasyfikacji zbioru CIFAR-10, uzyskując skuteczność na poziomie 47%. W części drugiej tutoriala zapoznaliśmy się szczegółowo z architekturą i...

Neuronowe sieci konwolucyjne pozwalają uzyskać bardzo dobre wyniki klasyfikacji w przypadku obrazów. W poprzednim poście mieliście okazję dowiedzieć się, czym jest konwolucja oraz jak sklasyfikować zbiór CIFAR-10 wykorzystując prostą klasyczną sieć neuronową. Przypomnę, że uzyskaliśmy poprawność klasyfikacji na zbiorze testowym na poziomie 47%. W drugiej części tutoriala idziemy dalej: wyjaśniamy...